

 The Component Library

Version 0.91

Component Library Playbook

© 2014 CrownPeak Technology, Inc. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any
information storage and retrieval system, without permission from CrownPeak Technology.

Document History

Author/Editor Date Reason for Change Version

Fahd Shaaban 8/28/2014 Draft 0.90

Fahd Shaaban 10/23/2014 Class Versioning 0.91

CrownPeak Technology 2

Component Library Playbook

Table of Contents
The Component Library ... 1

Document History .. 2

The Component Library Overview ... 4

Benefits of the Component Library ... 5

Business Process guides the configuration of the Component Library ... 6

Considerations... 6

Specifications .. 6

Components .. 6

Components Methods .. 7

Templates .. 9

Playbook Notes .. 11

CrownPeak Technology 3

Component Library Playbook

The Component Library Overview
The CrownPeak Component Library provides a process to define re-usable template components that
provide an approved and repeatable “pattern” with the corresponding logic necessary to provide a
complete Authoring Experience (content capture and content validation) within the CMS.

The CrownPeak CMS provides a number of object types, including Templates, Models, and Assets.

Templates, which are made up of individual files, provide the ability to configure an authoring
experience allowing authors/editors to enter content, adhering to specific validation rules, and merging
the captured content within an approved presentation (HTML/CSS/JS) to produce pages.

These pages are called assets in the CMS, and each has a corresponding Asset ID.

The CMS also provides the ability to embed the rendered output of any asset within another, as well as
the ability to expose the content of any asset to be queried by, and used, within another. These content
provider assets are called widgets. Widgets are normal assets, but the way they’re used as described
above, is what makes them widgets.

Re-using content in the CMS is achieved with widgets. However, re-using code requires an alternate

approach.

The CMS provides template developers the ability to re-use code by encapsulating the repeatable code

patterns in Library Methods (or Functions) defined a Class. These custom library methods are available

to all templates, and provide a way to centralize the definition of the code and to re-use the code as

many times as required.

The Component Library is best suited when the HTML/CSS is structured and re-usable, where

components represent Front-End Patterns that can be assembled into Templates and ultimately Pages.

CrownPeak Partners and Agencies often provide their own Pattern Libraries. In addition, there are also

a number of open source and free Pattern Libraries available for download and use.

The Component Library supports Patterns that utilize other Patterns, which means that Components can

be nested within other Components. The following is a typical hierarchical structure to organize your

Components:

• Atoms or Elements: Smallest pattern type.
• Molecules or Modules: A collection of elements
• Organisms or Blocks: A collection of modules and elements

CrownPeak Technology 4

Component Library Playbook

• Layouts – A container that provides a way to organize the blocks, modules and elements used
on a page

Benefits of the Component Library

The Component Library provides the following benefits:

• The ability to define Template Components and use them to build templates quickly and easily.
• The ability to re-use the components multiple times within a single template and within other

templates.
• The ability to limit the review and approval of template changes to isolated components. When

a component is approved, the change can be deployed to all affected templates.
• By separating the presentation of each pattern into separate Component Assets, this will allow

the look and feel of Templates to be branched, and previewed in separate publishing
environments.

• The Component Library provides a workflow and process to define Patterns of approved
“markup”, or HTML/CSS/JS, without requiring any knowledge of the CrownPeak C# API.

• The Component Library imposes a consistent process to define a collection of Library methods
corresponding to each Pattern.

o Input Methods: These methods are used to add input controls to capture content, and
are called from the Input file of a Template

o Post Input Methods: These methods are used to validate or manipulate the captured
content, and are called from the Post Input file of a Template

o Output Methods: These methods are used to render the content within an approved
presentation, and are called from the Output file of a Template.

CrownPeak Technology 5

Component Library Playbook

Business Process guides the configuration of the Component Library
The Component Library can be configured to support many business processes. Before starting the

configuration, it is beneficial to solidify the scope of the configuration. Use this list to determine how the

customer is going to use the Component Library in their instance.

• Does the customer want to leverage an HTML/CSS library of patterns?
• Does the customer want to re-use capabilities and site components?
• Does the customer want to streamline the process of making changes to common or shared

components?

Considerations

• Changing a component used by multiple templates will impact all templates.
• Changing the associated Component Logic (to accommodate new fields, additional validation

rules, etc) has to be done within the methods in the Custom Library. Modifying methods can
be accomplished by adding conditional statements to encapsulate the changes at the Class Level
and associate the various Class Versions with any criteria, such as a specific publishing state.
Versioning of Classes is described in detail below.

• An initial configuration effort is required to setup all the necessary components based on the
provided Pattern Library. Templates can then be configured relatively quickly leveraging the
configured, tested, and approved components.

• The CMS will support multiple Component Libraries.
• Component Libraries can be defined at any level: Instance, Site Collection, Site, Site Section, etc.
• The Component Library approach only impacts how Templates are configured. There is no

impact at all on the management of Assets, Workflow, Publishing configurations, and ACLs.

Specifications

Components
Components are created using a Component Model based on a Component Template that prompts for

the markup (html/css/js) of an approved Library Pattern.

The markup of the Pattern is copied from the Pattern Library and pasted into a new Component in the

CMS, in the Markup content field.

Unlike Patterns, which focus primarily and solely on the final rendering or output of the content,

Components extend the Pattern Definition, and provide the necessary CMS rules for a corresponding

Authoring Experience to capture the content, and validate it.

CrownPeak Technology 6

Component Library Playbook

How to build a Component
Each component requires at three corresponding Library Methods

Assuming an initial pattern as follows

Pattern:

The implemented pattern will need to be modified to the following, and implemented as a Component

Asset in the CMS

Component:

Logo Component Methods:

INPUT

public static void logo_input(String label,String name)

{

Input.StartControlPanel(label);

// input fields, or calls to other input methods go here

ShowAcquireParams img= new ShowAcquireParams();

img.ShowBrowse = true;

CrownPeak Technology 7

Component Library Playbook

img.ShowUpload = true;

img.Extensions = Util.MakeList("jpg", "jpeg", "gif", "png");

Input.ShowAcquireImage(label, name + "_src", img);

Input.ShowTextBox(label + " Description", name + "_alt");

Input.EndControlPanel();

}

POSTINPUT

public static void logo_postinput(PostInputContext context, String name)

{

// validation rules go here

if (String.IsNullOrEmpty(context.InputForm[name + "_alt"]))

{

 context.ValidationErrorFields.Add(name + "_alt", "required");

 }

}

OUTPUT

public static String logo(Asset asset, String name)

{

 Asset component = Asset.Load(componentsPath()+"/atoms/logo");

 StringBuilder sbContent = new StringBuilder();

CrownPeak Technology 8

Component Library Playbook

 sbContent.Append(component.Raw["markup"]);

//variable substitution occurs here

sbContent.Replace("{src}", asset[name + "_src"]);

sbContent.Replace("{alt}", asset[name + "_alt"]);

return sbContent.ToString();

}

Templates

The input template is constructed by calling the INPUT method of all the components (atoms,

molecules, organisms) that are required for a specific Page Type.

The postinput template is constructed by calling the POSTINPUT method of all the components (atoms,

molecules, organisms).

The output template is constructed by calling the OUTPUT method of each component by adding the

output of each component to the Column the component belongs to based on selected Layout.

Class Versioning

For each library file that is needed to be versioned a Base Abstract Class needs to be created. This Base

Abstract Class will define all the methods available as virtual methods. If a new version needs to be

created; A new class can be created that inherits from this Base Class. If this class is empty, it will use all

the methods defined in the Base Class. Developers can than create override methods in the new

Versioned Class, and those methods with be used.

The switchboard technique is used in the Base Class to return the appropriate version of a Class based

on any criteria, such as workflow state.

In the template files, an initial call can be added to the ReturnClass method (passing in the asset or a

CrownPeak Technology 9

Component Library Playbook

criteria, such as the workflow state) and it will return the Versioned Class associated in the switchboard.

The major benefit in this is since the method returns the Abstract Class’ contract and the Versioned

Class, the code in the input and output templates does not have to be changed or updated to test these

method changes.

The Switchboard

public abstract class ComponentLibrary
{
 public static ComponentLibrary ReturnClass(Asset asset)
 {
 String version = getVersion(asset);
 try
 {

switch (version)
 {
 case "1":
 return new CrownPeak.CMSAPI.CustomLibrary.ComponentLibrary_V1();
 case "2":
 return new CrownPeak.CMSAPI.CustomLibrary.ComponentLibrary_V2();
 default:
 return new CrownPeak.CMSAPI.CustomLibrary.ComponentLibrary_V1();
 }
 }
 catch (Exception ex)
 {
 return new CrownPeak.CMSAPI.CustomLibrary.ComponentLibrary_V1();
 }
 }

public static string getVersion(Asset asset)
{

Asset clConfig = Asset.Load(componentsPath(asset) + "library config");
 switch (asset.WorkflowStatus.Name.ToString())

{
 case "Live":
 return clConfig.Raw["live_version"];
 break;
 case "Stage":
 return clConfig.Raw["stage_version"];

CrownPeak Technology 10

Component Library Playbook

 break;
 case "Draft":
 return clConfig.Raw["draft_version"];
 break;
 default:
 return "1";
 break;
 }

}
}

Notes and Additional Information
More information can be found in

https://connect.crownpeak.com/products/product_features/marketplace_connectors_and_dashboard_

widgets

Playbook Notes

https://connect.crownpeak.com

CrownPeak Technology 11

https://connect.crownpeak.com/products/product_features/marketplace_connectors_and_dashboard_widgets
https://connect.crownpeak.com/products/product_features/marketplace_connectors_and_dashboard_widgets
https://connect.crownpeak.com/

	The Component Library
	Document History
	The Component Library Overview
	Benefits of the Component Library

	Business Process guides the configuration of the Component Library
	Considerations
	Specifications
	Components
	How to build a Component

	Templates
	Class Versioning

	The Switchboard
	Notes and Additional Information

	Playbook Notes

